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Abstract. Hot topics in knowledge discovery and interactive data min-
ing from natural images include the application of topological methods
and machine learning algorithms. For any such approach one needs at
first a relevant and robust digital content representation from the im-
age data. However, traditional pixel-based image analysis techniques do
not effectively extract, hence represent the content. A very promising
approach is to extract graphs from images, which is not an easy task.
In this paper we present a novel approach for knowledge discovery by
extracting graph structures from natural image data. For this purpose,
we created a framework built upon modern Web technologies, utilizing
HTML canvas and pure Javascript inside a Web-browser, which is a very
promising engineering approach. Following on a short description of some
popular image classification and segmentation methodologies, we outline
a specific data processing pipeline suitable for carrying out future sci-
entific research. A demonstration of our implementation, compared to
the results of a traditional watershed transformation performed in Mat-
lab showed very promising results in both quality and runtime, despite
some open problems. Finally, we provide a short discussion of a few open
problems and outline some of our future research routes.
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1 Introduction and Motivation

Big challenges in the biomedical domain are today in the development of new
methods, algorithms and tools for the effective analysis and interpretation of
complex biomedical data [1]. Within such data sets, relevant structural and/or
temporal patterns (“knowledge”) are often hidden, difficult to extract, thus not
directly accessible to a biomedical expert, consequently, a major challenge is in
interactive Knowledge Discovery and Data Mining which relies heavily on ma-
chine learning approaches. However, many of the classical methods are based
on the assumption that the data objects under consideration are represented
in terms of feature vectors, or collections of attribute values; Bunke (2003) [2],
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for example, argued that graphs have a representational power that is signif-
icantly higher than the representational power of feature vectors. Moreover,
graph-theory provides powerful tools to map data structures and to find novel
connections between data objects [3] and allow the application of statistical and
machine learning techniques [4].
Methods from computational geometry and algebraic topology may also be of
great help [5], and could be combined with machine learning approaches, e.g.
evolutionary algorithms [6], [7]. Promising future research routes in this field
are in interactive visual data mining together with graph-based data analysis
[8], [9]. Another benefit of a graph-based data structure is in the applicability
of methods from network topology and network analysis and data mining, e.g.
small-world phenomenon [10], and cluster analysis [11] to mention only two.

The application of graph theory to image analysis (see e.g. [12]) is in the
focus of research for some time and still poses a lot of challenges and calls for
new approaches.

2 Definitions

In this work we are dealing with natural images, which includes every digital
image taken from real world scenes, for example biomedical images from der-
moscopy (epiluminescence microscopy). The starting point of our calculations is
the conversion of such a digital image into a topographic map, which we need for
graph extraction. Caselles et al. (1999) [13] provide some necessary definitions:

Definition 1 (digital image) A digital image is modelled as a real function
u(x), where x represents an arbitrary point of the plane and u(x) denotes the
grey-level at x. Let u : Ω → R be an image, i.e., a bounded measurable function.

Definition 2 (upper level set) Given an image u, we call upper level set of
u any set of the form [u ≥ λ] where λ ∈ R.

Definition 3 (connected component) Let X be a topological space. We say
that X is connected if it cannot be written as the union ot two nonempty closed
(open) disjoint sets. A subset C of X is called a connected component id C is a
maximal connected subset of X, i.e., C is connected and for any conected subset
C1 of X such that C ⊆ C1, then C1 = C.

Definition 4 (upper topographic map) The upper topographic map of an
image is the family of the connected components of the level sets od u, [u ≥ λ],
λ ∈ R.

Definition 5 (topographic map) If u belongs to a function space, such that
each connected component of a level set is bounded by a countable or finite number
of oriented Jordan curves, we call topographic map the family of these Jordan
curves.
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3 Related Work

3.1 Traditional Image Classification

In the biomedical domain there has been a shift in demands, from software as-
sisting in the production and processing of image data, analysed by humans
alone, to software systems to represent, discover and evaluate knowledge. In [14]
the authors describe a method of image classification which might be catego-
rized as traditional, in the sense that it does not segment an image into logical
substructures and attempts to compute relations among those. Instead, it uses
metrics based on pixel values, divided into 1st order statistical parameters which
describe the global structure of an image, and 2nd order statistical parameters
which describe the neighborhoods of individual pixels.

– 1st order parameters. Amongst the global parameters are those that use
grey-value probabilities (histogram values) as the building blocks of their
formulas. They include variance (as a measure of homogeneity), skewness
(asymmetry of the value distribution), kurtosis (shape, either peaked or flat)
and energy as well as entropy.

– 2nd order parameters. In order to calculate those, the probability of grey-
value co-occurrence is used as a basic concept. Using these values, the local
/ neighborhood parameters Energy, Entropy, Contrast, Homogeneity and
Correlation are computed.

Once the needed metrics were taken, a C4.5 algorithm was used to build a
decision tree and classify the images. Although the algorithm is not a segmen-
tation approach as such and thus not immediately usable in the endeavour to
extract graph structures out of image data, it could provide regional informa-
tion usable as classifiers in tasks such as identifying structural / topographical
primitives. Therefore it might constitute a building block in the preprocessing
pipeline of a more extensive procedure.

3.2 Watershed methods

Watershed algorithms [15] got their name from the fact that they treat images
as topographic maps, that is as ’landscapes’ with height structures. The seg-
mentation of those landscapes into regions of pixels belonging together is then
performed by assuming drops of water raining down on the map, following paths
of descent into low areas until they form ’lakes’, which in watershed terminology
are called catchment basins. This can be thought of in one of various ways: by
simulating drops raining from above, by immersing the whole landscape into an
ocean (with holes punched into the deepest spots of the landscape, so the water
can enter.), but also by using topographical distance measures like Minimum
Spanning Trees (MST). A usual watershed processing pipeline consists of the
following steps:
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1. Transformation into a topographic map. The color or gray values of
the pixels in an image are converted to height information; for example, if
given a grayscale from 0 (black) to 255 (white), one could assume 255 to be
the highest possible peak in a landscape and 0 the deepest reachable point,
thereby converting the image into a three-dimensional structure of voxels
with coordinates (x, y, z). As a first step, the application of a gradient filter
in order to produce continuous ’crests’ throughout the landscape might be
in order.

2. Finding local minima. In order to be able to fill a topographical relief with
imaginary fluid by immersion, one first has to find the points through which
the fluid can enter the landscape (or above which points it accumulates,
depending on one’s view). This is akin to finding the set of local minima in
the image interpreted as topographical relief. This can easily be done in an
image, by inspecting small regions of the image in sequence and finding the
ones with the lowest value (one would probably use color or computed grey
values). If such an operation would result in a significant percentage of all
pixels marked as minima, which is often the case with watershed methods,
a suitable subset of the computed minima (= seed points) can also be used
instead.

3. Finding catchment basins. The main point in using watershed methods
is finding regions that spatially belong together. They are usually seen as
caverns or ditches separated by crests (the formations already extracted from
color / grey value information earlier). This is done by using an algorithm to
simulate flooding, so that the water accumulates in basins until it reaches a
crest. At this point the basin can either ’flow over’, filling an adjacent deep
region as well, or the flooding can be stopped by erecting a virtual water-
shed. Another way to see this is by visualizing the voxels as vertices of a
graph; based on this structure, the voxels belonging to a nearest minimum
can be found by applying traditional, well-tested and well-understood graph
algorithms such as Minimum Spanning Trees (MST). In order to find the
voxels belonging to a catchment basin, the edges between them would first
be assigned a weight corresponding to the distance they represent. By intro-
ducing auxiliary vertices connecting the first set of minimum points in the
landscape via an edge of weight zero, a connected MST can be found which
encompasses all the vertices in the graph. The individual subtrees starting
at the set of minimum points then form the output of the algorithm.

4. Erecting watersheds. Functioning as an artificial divide between two adja-
cent catchment basins, watersheds provide the final segmentation lines of the
process described. When to erect a watershed vs. letting two regions merge
(by being overflowed from one side) is a question depending on how many
segments are wanted, so no universal decision criterion exists. As watershed
methods often produce over-segmented images, this is a very important point
in implementing such a procedure.
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Fig. 1: MST view of finding catchment basins: According to [16] a minimum span-
ning tree can be computed using auxiliary (virtual) vertices. The weight of the edges
represents a dissimilarity measure between pixels / voxels.

3.3 Region Merging

This section briefly describes a region merging algorithm which was published
by [17]. This algorithm forms the basis of our own image segmentation imple-
mentation whose results will be discussed in a later section.

The original digital image can be interpreted as a directed, conservative
weighted graph G, whose vertices V are the pixels themselves, where every (non-
bordering) vertex has eight edges to its neighbouring nodes. Every edge e ∈ E is
weighted with the difference of the intensity values i ∈ {0 . . . 255} of the pixels
it connects. In this initial phase every pixel also constitutes its own region. To
group similar pixels into a region R, where R is a subset of V , the following steps
(written as pseudo algorithm) are needed:

1. Sort all edges e ∈ E in ascending order.
2. For all edges e do:

(a) Check if the pixels connected by e are already in the same region. If yes,
continue to the next edge.

(b) If not, check if there exists a boundary between the regions under obser-
vation. There exists a boundary if the minimum edge weight connecting
those regions is greater than the minimum of the maximum internal
MST-edges of the respective regions, where MST denotes the Minimum-
Spanning Tree of the regions the pixels belong to.

(c) If a boundary exists, continue to the next edge.
(d) Else, merge the regions and update any pertinent properties (internal

MST, avg color, gradients, etc.).

3.4 Segmentation techniques using hybrid approaches

Aside the rather traditional approaches mentioned earlier there has also been
published some interesting work in methods using anterior knowledge about ob-
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ject primitives, employing supervised learning etc. An example of this is the ap-
proach described in [18]. First, they propose extracting known and unknown ob-
jects from an image - this of course presupposes the existance of such knowledge
and an efficient lookup possibility in an object database. Once those primitives
are established, they compute object histograms over several different distances
for each single object previously found. Thus they strive to derive an understand-
ing about the global image structure from individual regions. For instance, if an
object were a tree, and its histograms of surrounding objects would comprise
(in ascending order of distance): 3 trees, 7 tress, 25 trees..., one could infer that
the image depicted a forest. If, however, the histograms would show: 3 trees and
3 windows, 5 trees and 5 windows, 7 trees and 7 windows..., the image might
rather depict an alley. Although in our work we are not yet concerned about
object recognition or category discovery, this modern approach is rather similar
to ours and we are looking forward to seeing further advancement in the area.

4 Experimental setup

Our overall goal is to establish a software framework for graph extraction and
graph analysis which is open source and accessible via a Web site. Specifically, as
technology in Virtual Machines has improved dramatically since the late 2000s,
it is now feasible to conduct such computations client side in a language like
Javascript, which would have been fantastic only a few years back. The advan-
tages to this approach are manifold: First, the possibility of running a low-cost
infrastructure as scaling is done automatically by users providing their own com-
putational power. Second, we have to store only the compressed graph structure
(in JSON) along with some metadata concerning the algorithms and parameters
used; storing the complete images is no longer required. Third, the processing
is done faster because the additional computation time necessary in Javascript
is now less than the time it takes to upload an image. Fourth, we can thus
make use of the amazing visualization capabilities now offered for free by mod-
ern Javascript libraries; this will allow our users to immediately see and interact
with the results of our computations.

4.1 Processing pipeline

In extracting a graph from a natural image, we generally follow 4 consecutive
steps whose specific implementation may be switched and whose input and out-
put datastructures may vary depending on the chosen segmentation algorithm.
Nevertheless, they form a logical flow which we intend to formalize in later
versions of our framework in order to provide a standard procedure that user
extensions can be plugged into.

1. Image Preprocessing. As a first step we may need to apply some prepro-
cessing operations, e.x. the conversion to an intensity (grayscale) image or a
background separation step. In any case both input and output of this step
are images.
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2. Algorithmic Preprocessing. There exist a wide variety of image segmen-
tation algorithms, some of which are graph-based (like the region merging
approach described earlier), while others would use clustering, compression
etc. Therefore, the second step in our pipeline consists of providing the datas-
tructures needed by the particular class of segmentation method. For the
example case in this paper, we transform the image to an initial graph struc-
ture, with every pixel forming it’s own region, and provide an adjacency list
and edge list representation for further computations.

3. Image Segmentation. The core of our processing pipeline consists of the
actual image segmentation step, which transforms the datastructures pro-
vided to it into a label map denoting each pixels affiliation to a region. In
this step users should be able to choose among different classes and specific
implementations of algorithms. In the future we also intend to give users the
opportunity to implement and upload their own code, which will be injected
into the pipeline.

4. Graph extraction. Based on the label map produced in the preceding step
we can now extract the graph structure by first computing the region cen-
troids followed by a Delaunay triangulation on the resulting set of vertices.
Additionally, depending on the chosen segmentation algorithm and imple-
mentation, a representative feature vector will be stored for each region.
This might include information like average color, gradients, or environment
histograms, and in the future will be adaptable by the user as well.

Fig. 2: A depiction of our computational pipeline: The input image (1) is transformed
by a simple preprocessing step (2), then we segment the image using the Meyers 1994
watershed algorithm (Matlab implementation) [19] (3). Once the regions are obtained,
centroids (4) as well as k-nearest neighbors (5) are computed and the graph is stored
as a JSON datastructure visualized by the three.js Javascript framework (6).
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5 Results

As we are building our graph extraction framework from the ground up, we
have yet only implemented a single algorithm to demonstrate its feasability:
We chose the Kruskal-based region merging algorithm described in [17] and
implemented it in Javascript, adding two additional parameters to the algorithm:
While the original paper only utilized k, which defined an input to the threshold
computation above which two regions would be merged, we are also using s
(size-threshold), the minimum size of pixels a region has to contain in order to
be considered in the final graph construction phase, as well as m (max-merge-
size) which gives the maximum amount of pixels a region may be grown to.

Fig. 3: Result of applying a Kruskal based region merging algorithm to an image of
numerous small scale regular structures. (1) Input image, (2) Result with parameters
k = 1150, s = 0,m = ∞, (3) Result with parameters k = 150, s = 5,m = 500, (4)
Result with parameters k = 50, s = 2,m = 150.

In order to be able to compare our results, we performed a watershed-based
segmentation plus graph extraction in Matlab as well. To that purpose, we chose
a simple algorithm wich converts the RGB into an intensity image, performs a
top hat filtering followed by a grey level threshold computation. It then converts
the image to a binary matrix which the watershed is finally performed on. The
algorithm only uses 1 parameter d to control its behavior - the size of the disk-
shaped morphological structuring element that is used in the top hat filtering.

Fig. 4: Results of applying a Matlab Watershed algorithm to an image of numerous
small scale regular structures. (1) Input image, (2) Result with parameter d = 5, (3)
Result with parameter d = 10, (4) Result with parameter d = 20.
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As we haven’t implemented the watershed segmentation ourselves and there
are diverse ways of doing this, we will not delve into details about the quality
of the resulting images. However, we would like to compare the execution time
of both algorithms for the different parameter settings as well as the resulting
graph sizes, as those are important for any further computation. Our test system
was equipped with a Core i5 Quad IvyBridge CPU, 8 GB of RAM and an SATA
III SSD drive. No hardware acceleration was used in either case.

Table 1: Runtimes and graph sizes for different algorithms & parameter settings.

Algorithm k s m d Nr.Vertices Runtime in ms

ML / Watershed 5 2,350 493

ML / Watershed 10 5,065 1,044

ML / Watershed 20 6,323 1,359

JS / Kruskal 1150 0 ∞ 3,952 3,178

JS / Kruskal 150 5 500 4,169 3,220

JS / Kruskal 50 2 150 13,916 3,863

Although at first glance it would seem that the Matlab based watershed
algorithm clearly outperforms the Javascript based Kruskal segmentation, it is
worth noting that the latter has only been in existence for about 2 weeks and
no optimization has been performed on the code (see below). Moreover, since
region merging depends on a sorted edge list for the original image graph, this
base operation does not change with different parameters. Last, our Kruskal
based method for the most extreme set of parameters produces a graph of about
twice the number of vertices than the largest graph emitted by ML / Watershed.

6 Open Problems

Graph based analysis of image data on the Web (-browser) is still a novel topic.
Consequently, there are many open issues to address, two of which will affect us
in the immediate future.

– Performance. Even though our first results are already very promising and
could not have been achieved only a few years ago, there is still a small
gap in the performance of Javascript and highly optimized, Desktop-based
compiled libraries. In order to address this issue, we propose to perform
three improvements on our initial code base. First, our code currently uses
generic Javascript data types, while typed datastructures allow significantly
higher performance - this can be done by simple refactoring. Second, new
technologies like asm.js would enable us to write low-level pieces of code in
C and compile them to highly optimized Javascript. This requires special
support by JS Virtual Machines, but has already shown the potential to
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speed up code execution to within 2x the runtime of native compiled C code.
Third, a shift to parallel implementations of our algorithms would provide
the opportunity to outsource those operations to a GPU (e.x. via WebGL),
which could reduce runtime to a small fraction of today’s.

– Quality of extracted graphs. At this point we can already extract graph
structures of different sizes and forms, but we lack a metric to judge if the
obtained graph is suitable for further computation towards a given goal. As
there seem to be no scientific graph analysis libraries available in JS today,
we will have to implement our own in order to compare the results to those
obtained by traditional image segmentation or manual diagnosis [20].

7 Conclusion and Future Work

Hot and promising topics for future research in knowledge discovery and data
mining from natural image data is in the application of sophisticated topological
methods and machine learning approaches, where natural images are seen as
topographical landscapes, or map structures, similar to a terrain network [21]. On
such landscapes autonomous multi-agents [?] [22], e.g. ant-robots [23], can leave
markings on ”interesting” areas, where such markings can be sensed by all robots
and allow them to cover the unknown terrain without direct communication with
each other, e.g. to discover anomalies, similarities or dissimilarities in images -
exactly the aim of knowledge discovery and data mining. In the near future we
will focus on the following issues:

– Multistage processing. To get even better results on small scale regular
structures, it could be useful to perform several passes of our methods. For
instance, background separation could be achieved with certain parameters
in a first step. Afterwards one can apply the method again in order to find
similar structures within the remaining boundaries.

– Compression / reconstruction of images via topographic maps.
When a digital image is converted to a topographic map, the whole im-
age information could theoretically stay complete, in which case the image
can be fully restored afterwards. This might lead to a new approach in image
compression.

– Similarity measure on graph structures. One major problem of tak-
ing a single digital image is measurement errors (artefacts) stemming from
electronic fluctuations in the picture taking device. We could avoid these mis-
takes by taking pictures in short sequence and merging them in a meaningful
way. Furthermore identifying similarities and differences between these im-
ages could help to improve the quality and stability of the resulting graphs,
thus enabling us to get more reliable results from the data.

– Extendable Web based research platform. In order to make our plat-
form valuable to a variety of researchers, we not only need to implement
a range of algorithms ourselves, but enable our users to easily exchange
their results or even upload their own code to test it on predefined im-
ages. This would be interesting from our perspective as storing different
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image− algorithm− parameter sets opens up the way to meaningful com-
parisons of results as well as to applying machine learning techniques on
the whole processing pipeline. Moreover, it is also desirable to our users as
they could use our platform as a publishing service, making their research
accessible / reproducible via simple bookmarking.
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